Solanka L., van Rossum M.C.W. & Nolan, M.F. Noise promotes independent control of gamma oscillations and grid firing within a recurrent attractor network. eLife 2015;10.7554/eLife.06444.

Chadwick A., van Rossum M.C.W., Nolan M.F. (2015) Independent Theta Phase Coding Accounts for CA1 Population Sequences and Enables Flexible Remapping. eLife 4:e03542.

Ramsden H.L., Sürmeli G. ,McDonagh S.G. & Nolan M.F. (2015) Laminar and Dorsoventral Molecular Organization of the Medial Entorhinal Cortex Revealed by Large-Scale Anatomical Analysis of Gene Expression. PLoS Computational Biology 11(1): e1004032.

Gonzalez-Sulser A., Parthier D., Candela A., McClure C., Pastoll H., Garden G., Sürmeli G., and Nolan M.F. (2014). GABAergic projections from the medial septum selectively inhibit interneurons in the medial entorhinal cortex. Journal of Neuroscience 34, 16739-16743.

Rinaldi A., Defterali C., Mialot A., Garden D.L.F., Beraneck M., Nolan M.F. (2013) HCN1 channels in cerebellar Purkinje cell promote late stages of learning and constrain synaptic inhibition. Journal of Physiology 591, 5691-709.

Thuault S., Malleret G., Constantinople C., Nicholls R., Chen I., Zhu J., Panteleyev A., Vronskaya S., Nolan M.F., Bruno R., Siegelbaum, S.A., and Kandel, E.R. (2013). Prefrontal cortex HCN1 channels enable intrinsic persistent neural firing and executive memory function. Journal of Neuroscience 33(34):13583-13599.

Pastoll H., Solanka L., van Rossum M.C.W. & Nolan M.F. (2013). Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron 77, 141-154

Pastoll, H., Ramsden, H. Nolan, M.F. (2012). Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid firing fields. Frontiers in Neural Circuits 6: 17, 1-21. doi: 10.3389/fncir.2012.00017.

Pastoll, H., White, M.. Nolan, M.F. (2012). Preparation of parasagittal slices for investigation of dorsal-ventral organization of the rodent medial entorhinal cortex. Journal of Visualized Experiments 61, e3802. JoVE. doi:10.3791/3802

Donnell, C., Nolan, M. F., and van Rossum, M. C. W. (2011). Dendritic Spine Dynamics Regulate the Long-Term Stability of Synaptic Plasticity. Journal of Neuroscience 31, 16142-16156.

Dodson, P.D., Pastoll, H., and Nolan, M.F. (2011). Dorsal-ventral organization of theta-like activity intrinsic to entorhinal stellate neurons is mediated by differences in stochastic current fluctuations. Journal of Physiology 589, 2993-3008.

White M.D., Milne R.V.J. and Nolan M.F. (2011). A molecular toolbox for rapid generation of viral vectors to up- or down-regulate in vivo neuronal gene expression. Frontiers in Molecular Neuroscience. doi: 10.3389/fnmol.2011.00008

Zonta, B.**, Desmazieres, A.**, Rinaldi, A., Tait, S., Sherman, D.L., Nolan, M.F.*3, and Brophy, P.J.*3 (2011). A Critical Role for Neurofascin in Regulating Action Potential Initiation through Maintenance of the Axon Initial Segment. Neuron 69, 945-956.

O’Donnell, C. and Nolan, M.F. (2011). Tuning of synaptic responses: an organizing principle for optimization of neural circuits. Trends in Neurosciences 34, 51-60.

Cannon, R.C.**, O’Donnell, C.** & Nolan, M.F. (2010). Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Computational Biology 6(8): e1000886. doi:10.1371/journal.pcbi.1000886

Dudman, J.T., & Nolan, M.F. (2009). Stochastically Gating Ion Channels Enable Patterned Spike Firing through Activity-Dependent Modulation of Spike Probability. PLoS Computational Biology 5(2): e1000290. doi:10.1371/journal.pcbi.1000290.

Garden, D.L.F., Dodson , P.D., O’Donnell, C., White, M.D. & Nolan, M.F. (2008). Tuning of Synaptic Integration in the Medial Entorhinal Cortex to the Organization of Grid Cell Firing Fields. Neuron 60, 875-889.

Nolan, M. F., Dudman, J. T., Dodson, P.D., Santoro, B. (2007). HCN1 Channels Control Resting and Active Integrative Properties of Stellate Cells from Layer II of the Entorhinal Cortex. Journal of Neuroscience 27, 12440-12451.

Nolan, M. F., Malleret, G., Dudman, J. T., Buhl, D. L., Santoro, B., Gibbs, E., Vronskaya, S., Buzsaki, G., Siegelbaum, S. A., Kandel, E. R., and Morozov, A. (2004). A Behavioral Role for Dendritic Integration: HCN1 Channels Constrain Spatial Memory and Plasticity at Inputs to Distal Dendrites of CA1 Pyramidal Neurons. Cell 119, 719-732.*1

Nolan, M.F., Malleret, G., Lee, K.H., Gibbs, E., Dudman, J., Santoro, B., Yin, D., Thompson, R.F., Siegelbaum, S., Kandel, E.R. and Morozov, A. (2003). The hyperpolarization activated channel HCN1 is important for motor learning and neuronal integration by cerebellar Purkinje cells. Cell. 115, 551-564.

van den Top, M.**, Nolan, M.F.**, Lee, K., Richardson, P.J., Buijs, R.M. and Spanswick, D. (2003). Orexins induce increased excitability and synchronization of sympathetic preganglionic neurons. Journal of Physiology 549, 809 – 821.

Wang, J., Chen, S., Nolan, M. F. and Siegelbaum, S. A. (2002). Activity-Dependent Regulation of HCN Pacemaker Channels by Cyclic AMP. Signaling through Dynamic Allosteric Coupling. Neuron 36, 451-61.

Nolan, M.F., Logan, S.D. and Spanswick, D. (1999). Electrophysiological properties of electrical synapses between rat sympathetic preganglionic neurones in vitro. Journal of Physiology, 519, 753-64.

Nolan, M.F. and Logan, S.D. (1998). Metabotropic glutamate receptor-mediated excitation and inhibition of sympathetic preganglionic neurones. Neuropharmacology, 37, 13-24.

Nolan, M.F., Gibson, I.C. and Logan, S.D. (1997). Actions of the anaesthetic Saffan on rat sympathetic preganglionic neurones in vitro. British Journal of Pharmacology, 121, 324-330.

Logan, S.D., Pickering, A.E., Gibson, I.C., Nolan, M.F. and Spanswick, S.D. (1996). Electrotonic coupling between rat sympathetic preganglionic neurones in vitro. Journal of Physiology, 496, 491-502.

*1 For News and Views commentary see Johnston, D. (2005). Nature Neuroscience 8, 134-135.
*2 Featured article on the Neuron website and subject of a preview by Johnston and Narayanan, Neuron 60, 735-738.
*3 Joint corresponding authors
** Equal contribution of both authors.